Farm-Level Metrics

The role of non-traditional metrics in risk modelling & management

serecon

Bob Burden June 24, 2014

- 1. Define and discuss "nontraditional" metrics
- 2. What's changed the operating reality
- 3. How to take advantage so what?

- Fact is that NTM are needed for farmers to measure economic <u>and now</u> environmental sustainability and compliance
- Not just costs they will facilitate assessment of economic and environmental risks / impacts
- Most important leads to comparison of economic and environmental impact & risks, based on <u>changes</u> in management practices

Measurement motivates appropriate behaviour

Context - Metrics

- What Serecon does (traditional metrics people):
 - Valuations & Appraisals
 - Farm Asset Management JV with FNC
 - Management Consulting

erecon

- Our background in business valuation helps us quantify and qualify agriculture in ways that are meaningful to stakeholders
 - Policy decisions; litigation; institutions
- Life got messy FMD; HPAI; CWD.....

Specialists in Business of Agriculture

Specialists in Business of Agriculture

"non-traditional metrics"

- Different quantity
 - Different quality
 - Different types

serecon

- Benchmarks historically created using macro level data:
 - not comparable correlation vs causation
 - primary focus on average net income,
 not actual distribution of results or probability/risk
 - comparators based on political boundaries, <u>not</u>
 <u>primarily on agricultural production capacity</u>
 - regional or national average income values always ignore operational scale

"Farms Our Size"

Historically, benchmarks based on geo-political boundaries.

Benchmarks much more meaningful when based on agronomic potential: soils & climate.

Land Value Trends & GIS

Project Edit View Laver Settings Plugins Vector Raster Database Processing Help

Soil & Climate Data Refinement

- Regions based on agricultural capacity, which in turn is based on soil & climate
- **Distribution** of values for costs, not just the average value (allows assessment of economic risk, rather than just average return)
- Scale of operations reflected ("Farms our Size")
- Designed for farm-level decision-making

Meaningful Benchmarks – know the asset

The landowner is not necessarily the farmer! – still interested in:

1. Income generated by farming

erecon

2. Dividend generated by land ownership

 Capital appreciation of land
 Both the farmer and investor would benefit from measurement of economic & environmental risk & sustainability!

Fundamental Change in Industry

- Producers serious data fatigue: improve operational performance/stability, refine management of operations & production reduce risk of environmental impacts
- Investors serious data requirements: better investment & lease decisions measure potential environmental liabilities reduce risk of environmental liability & knowledge about the management/depreciation of the fundamental asset base

Must be a Win for All

- Data quality high Data less likely to have bias because not specifically created for the purpose of cost of production benchmarks
- Data quantity high Allows for protection of privacy while improving regional fidelity
- Cost-effective data collection method Has to be facilitated and <u>not</u> survey based
- Can model production data (e.g. crop insurance), but need accurate financial inputs/results at scale
- "big data" computational economics using a collaborative network approach

Why Accounting Data?

"non-traditional metrics"

- Different quantity
- Different quality the obstruction mapper
 - Different types

serecon

- Obstruction Mapper created to assess economic impact of forced changes to field path
- Wellsites & above-ground powerline structures
- Measures missed areas, travel overlap, and input overlap

BUT it also has unintended uses

Serecon Obstruction Mapper

Serecon Obstruction Mapper

Obstruction Mapper Demo

Traditional Uses:

- Impact of roads, wellsites or other structures impeding optimum field patterns
- Optimization of field efficiencies (including equipment selection and pathing options)
- Field efficiencies in turn affect travel time, input use, energy use, economics

Non-Traditional Uses:

- Modelling of energy use and climate impact for different management practices
- Estimation of the cost of environmental protection measures, such as leaving wetlands or wildlife habitat intact
- An assessment of the depreciation of the environmental asset base leading to more refined risk assessments – soil loss; production efficiency & water quality

Obstruction Mapper Uses

Example #1:

- Installation of new powerline structures
- Calculating the tangible economic costs of working around an obstruction

Example #1: Obstructions

Path Modelling

Current Pattern

Pattern around obstruction

Overlap Modelling

Current Pattern

Overlap after obstruction

Estimated Differential

	Area of Overlaps (acres)	Tangible Adverse Effects (\$)
Additional Equipment Operating Cost		
Equipment Operating Cost Due to Overlaps	1.24	\$83.83
Crop Loss		
Missed Area Not Seeded	0.07	\$24.65
Crop/Revenue Loss		
One Overlap	0.55	\$32.64
Two Overlaps	0.27	\$40.53
Three Overlaps	0.05	\$13.61
Additional Input Costs		
One Input Overlap	0.14	\$28.54
Two Input Overlaps	0.01	\$1.24

Total Additional Annual Costs & Losses	\$225.04
--	----------

Example #2:

- Field with numerous small wetlands
- Draining and seeding wetlands would reduce field operation time and increase acreage
- Quantify the cost of leaving wetlands in place

Example #2: Conservation Costs

60' seeder with wetlands

Path Modelling

60' seeder after draining

60' seeder with wetlands

Overlap Modelling

60' seeder after draining

	Before	Taking	After 1	aking	Area Affected	Total Overlap	Impact Value	Total Impact	
	(m²)	(ac)	(m²)	(ac)	(ac)	(ac) (ac)	(ac)	(per acre)	Estimate
Missed Area (ac)					-6.65		\$ 500.00	-\$ 3,325.12	
Missed Area (ac)	185.77	0.05	163.11	0.04	-0.01				
Footprint of Obstruction (ac)	26,889.90	6.64	0.00	0.00	-6.64				
Travel Overlaps (ac)					-14.35	-17.10	\$ 62.00	-\$ 1,060.10	
One Overlap (ac)	121,713.00	30.08	74,041.20	18.30	-11.78	-11.78			
Two Overlaps (ac)	14,307.00	3.54	4,572.40	1.13	-2.41	-4.81			
Three Overlaps (ac)	778.55	0.19	92.88	0.02	-0.17	-0.51			
Four Overlaps (ac)	0.00	0.00	0.76	0.00	0.00	0.00			
Input Overlaps (ac)					-3.67	-3.71	\$ 125.00	-\$ 463.14	
One Overlap (ac)	40,724.10	10.06	26,017.70	6.43	-3.63	-3.63			
Two Overlaps (ac)	222.01	0.05	77.02	0.02	-0.04	-0.07			
Three Overlaps (ac)	0.00	0.00	0.76	0.00	0.00	0.00			
Four Overlaps (ac)	0.00	0.00	0.00	0.00	0.00	0.00			
© Copyright 2014 Serecon Services Inc.				6 serecon	Total	-\$ 4,848.36			

Assumptions

Missed area impact = Alberta Canola Commission price (\$10.25 per bushel x 50 bushel) http://canola.ab.ca/canola_prices.aspx

Input overlap = ARD cost of production for black soil zone

Travel overlap = custom rate costs (\$25 seeding, \$12.50 swath, \$24.50 combine)

http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf14269 http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf14269

Ex#2 Details: Seeding

90' sprayer with wetlands

Overlap - Sprayer

90' sprayer after draining

Estimated Differential

	Seeding & Harvest	Spraying	Total Impact Estimate
Missed Area (Lost Revenue)	\$ 3,325.12		\$ 3,325.12
Travel Overlaps (Additional Operation Expense)	1060.10	364.42	\$ 1,424.53
Input Overlaps (Unnecessary Expenditure)	463.14	206.73	\$ 669.88
	\$ 4,848.36	\$ 571.16	\$ 5,419.52

"non-traditional metrics"

- Different quantity
- Different quality
- Different types environmental metrics

serecon

"Our ultimate goal is to sustainably source the raw materials we use in our products."

"Our current focus is on increasing the sustainability of the 10 priority agricultural raw materials represent more than 50 percent of our annual purchases."

"We partner with industry groups to advance sustainable sourcing frameworks across our supply chain."

Source: General Mills, Global Responsibility 2013

The End of Agriculture?

The End of Agriculture? Not A Chance!

A Focus on Measuring Sustainability is A focus on non-traditional depreciation!

serecon

Different things to different people **<u>BUT</u>**

- Objectivity
- Look to established, recognized, validated opinions
- Environmental Economic Social
- General Mills:
 - "Just do something real and be able to validate it"

What is Sustainability?

- Demonstrate progress in western Canadian cropping systems over 20 years environmental performance
- 2. Establish a baseline monitor future improvements
- 3. Create enabling conditions stakeholder discussion and development of commercial sustainability indicators in the food industry

Some Context – Our Experience

- US Keystone & "Field to Market"
- Not-for-profit with 50 member organizations
- Grower groups, conservation organizations, agribusinesses, food, restaurant and retail companies, academia and research org's
- Cool Farm Tool
- BASF etc..

erecon

Field to Market U.S. – we're not alone

• On-Farm Sustainability Initiative is an industry-led consortium

serecon

• A farm level tool

- Starting point to assess the environmental and economic impacts of change
- Allows for assessment of relative impacts of management changes against baseline

Deal with the operating reality

serecon Our Calculator – producer focused

- Easy to use
- Easy to understand
- Easy to work with
- Easy to transfer & expand

- Non-proprietary
- Ability to develop industry-wide commitment

Calculator Principles

- Improvement in:
 - every indicator
 - every crop
 - from 1986 to 2006
- Improvements (the so what) driven by:
 - Higher yield
 - Reduced tillage
 - Improved nutrient management
 - Changes in crop rotations

Canadian Results

Sustainability of Canadian Peas

serecon Sustainability of Canadian Lentils

$66\% \downarrow$ in soil loss $30\% \downarrow$ in energy use $29\% \downarrow$ in greenhouse gases $26\% \downarrow$ in land use

serecon Sustainability of Canadian Canola

$55\% \downarrow$ in soil loss $29\% \downarrow$ in energy use $34\% \downarrow$ in greenhouse gases $12\% \downarrow$ in land use

Sustainability of Canadian Flax

$54\% \downarrow$ in soil loss $28\% \downarrow$ in energy use $26\% \downarrow$ in greenhouse gases $18\% \downarrow$ in land use

Sustainability of Canadian Oats

- Indicators useful as part of management and investment decisions "appropriate"
- Ability to reconcile improvements in sustainability with the financial impact of sustainable farming – "behaviour"
- Consumers and food industry increasingly demanding quantification of sustainability
 - Bonnefield, CPP, FNC standards of care

erecon

- Measurement motivates appropriate behaviour
- Computational economics using a collaborative network approach (again)

Sustainability Measures at Farm Level

Expanding the nontraditional metric Toolkit

SO WHAT??

Integrating metrics (Indicators)

into other models & analysis – collaborative networks

serecon

Non-traditional metrics can be integrated into other analysis & decision-making tools

- Example: Serecon's farm path simulation software used to map obstructions
- Can be used to model field efficiencies
- Field efficiencies in turn affect travel time, input use, energy use, climate impact, economics

Expanding the Toolkit

Example #3:

- Small field with 33' seeder (16" overlap)
- Considering replacing with 49' seeder with GPS navigation (9" overlap)

Example #3: Field Efficiencies

Estimated Differential

	Travel distance	Missed Area	Input Overlap
Old (33' @ 16" overlap)	13,807 m	41 m ²	10,687 m²
New (49' @ 9" overlap)	9,302 m	68 m²	9,858 m²
Difference	-32.6%	17 m²	-7.8%

Estimated Differential

- 32.6% less travel distance/time = less fuel used
 - = lower GHG emissions

• 7.8% less input overlap

- = less fertilizer used
- = lower GHG emissions
- = lower climate impact
- Alignment of economics and reduced environmental impact
- In other cases (drainage of wetlands, for example), environmental benefits and financial results may not align, but measurement allows for informed decisions & policies

But we now have a way to define "appropriate behaviour" & a way to motivate it

Fieldprint Indicator	Western Canada	Saskatchewan	A: Home Quarter
Land Use Efficiency	50.0	51.7	39.4
Soil Erosion Risk	50.0	54.1	9.0
Energy Use	50.0	40.7	49.8
Climate Impact	50.0	47.6	53.3
Soil Carbon Release	50.0	47.1	51.9

Sample Output

Non Traditional Metrics – the summary

- Definition
- What's Changed
 - Impacts

- Quality more focused/relevant
- Quantity computational economics
- Type & integration/extension collaborative networks

NTM - Definition

• The farmer

- Individuals, institutions & corporations
- Governance matters
- The consumer
 - A brand is simply a promise of value metrics help validate that promise
- The collection process
 - Big data and collaborative networks
 - Individual generating data is not providing analysis
- The understanding of "full asset depreciation"
 - Its more than just iron

erecon

NTM – What's Changed

Measurement:

- NTM need to be considered as part of management and investment decisions
- The average is becoming irrelevant
- Demonstrating "margin governance" is very relevant
- Need to have collaborative network approach

Measurement motivates appropriate behaviour – the carrot

• Ability to reconcile improvements in sustainability with the financial impact of sustainable farming

Cross compliance tied to appropriate behaviour – the stick

Non-Traditional Metrics

serecon

Questions?

Bob Burden (780) 448-7440 www.serecon.ca