Weather-based Insurance Market Development: Challenges and Potential Solutions

Raushan Bokusheva

IARFIC, June 23, 2014

Weather-based nsurance market development

- Weather based insurance (WBI) is better suited to cope with asymmetric information problems
- Launch of first WBI pilots in India and Morocco in the early 2000s -
- Most of WBI contracts are designed to provide coverage against risk of drought
- Rationale: to promote adoption of higher income but riskier technologies
- Low participation of farmers in WBI

What determines demand for WBI ?

- Effectiveness of WBI
- Insurance costs
- Farm-specific factors
- Market development

How to improve WBI contract design to make WBI more effective and affordable for farmers?

WBI effectiveness & affordability

and the state of t

Critical aspects

- basis risk
- model prediction uncertainties
- presence of more affordable alternatives

How does it work?

- Selection of a weather index
- Indemnity payment (I): I = p Max [x_s x, 0]
- x is actual realisation of weather index
- x_s strike level of the index
- p is a tick size

if x falls below its strike value x_s the insurance pays: $p[x_s - x]$

Basis risk

Mismatches between insurance payouts and actual yield losses

- Empirical investigations show that WBI
 - can provide considerable yield risk reduction
 - may be a good alternative to farm yield insurance
- Most studies use
 - aggregate yield data
 - measure risk reduction ex post

Model prediction uncertainties

Downside risk reduction: ex post vs. ex ante assessments

sample means (40 farms)	farm insurance	national yield insurance	rayon yield insurance	weather- index insurance (Selyaninov)	weather- index insurance (Ped)
mean squared negative prediction error					
ex post approach	46%	52%	66%	35%	32%
ex ante approach	40%	19%	49%	-2%	20%

Model prediction uncertainties

When ex-post risk reduction may exhibit a poor predictive power?

- (a) historical time series might be too short to represent adequately the true joint distribution of yields and the underlying weather variable
- (b) temporary changes in the joint distribution of crop yield and weather variables.

Use of lower cost alternatives

and the state of t

- Informal insurance
- Technological options

can be

- more effective
- affordable and
- sustainable in the long term

Is there any need for WBI ?

- basis risk
- model prediction uncertainties
- presence of more affordable alternatives

WBI can be an effective instrument of coping with extreme weather events

Modeling yield-weather dependence

- Dependence structure can be different for extreme realizations compared to moderate values of a weather variable
- Dependence of crop yields on weather can be modeled in a more consistent and flexible way by means of copulas
- Standard regression analysis applies all realizations of the weather variable to estimate expected conditional yield, i.e.

$$\widetilde{\mu} = E(Y|W = w)$$

• Use of copulas allows to condition expected yield on the weather realizations below a selected level of VaR of the weather variable, i.e. $\tilde{\mu}^* = E[Y|W \le VaR_{\alpha}(W)]$

Weather variable distribution

Cumulative rainfall distribution (April-July), Akmola weather station

02000

NA NUMBER OF THE

Ways to model dependence structure

Gaussian copula with Normal margins, r=0.69

Joint distribution of cumulative rainfall and wheat yield for a study farm

Gumbel surv. copula with Weibull margins, theta=2.11

Na Na REAL CONTROL

Capturing adequate dependence structure

00000

NIN HINS NIN MIL

WBI rating by using copulas

- Two copula models: survival Gumbel and Joe copulas
- Contract design: 3 quantiles of the weather index distribution (q=0.1, 0.2, and 0.3)
- Comparisons between 3 copula-based contracts and 3 regression-based contracts
- Risk reduction is measured in terms of expected shortfall (ES)

Data

- wheat yield data for 47 large grain producers from five counties (rayons) in Northern Kazakhstan, 1971-2010
- yield were tested for structural breaks and autocorrelation and detrended
- weather data from corresponding weather stations, 1971-2010 (one in each county)
- Two weather indices: Cumulative rainfall and Ped drought indexes
- Normal, Lognormal, Gamma, Logistic, and Weibull distributions to model marginal distributions

Downside risk reduction

Expected shortfall estimates

sample mean		quantiles	
- (47 study farms) –	q=0.1	q=0.2	q=0.3
copula-based contract	0.90	0.48	0.37
regression-based contract	0.66	0.29	0.19

10-100

NIN BURNEY CHI

Social welfare perspective

Effective and efficient not only from the farmer point of view

- More efficient instrument of disaster assistance than ad-hoc payments
- Reduction of negative impact on ecosystems

Conclusions

- Crop insurance should play a complementary role to other potentially more effective and sustainable strategies for risk reduction
- WBI against catastrophic events can be more effective and demanded compared to standard WI contracts. Three important aspects:
 - coping with extreme events (limited alternative options)
 - willingness to pay
 - fast settlement of insurance claims
- Application of the copula approach might improve performance of weather index insurance designed to cope with extreme events
- Selection of an adequate weather index is still an issue

Weather-based insurance pilots map

Downside risk reduction by catastrophic WBI

Lower partial moment

sample mean		quantiles	
	q=0.1	q=0.2	q=0.3
copula-based contract	0.49	0.41	0.38
regression-based contract	0.46	0.36	0.36

Changes in weather variable distributions

0

Summer temperature anomaly distribution

Hansen et al., 2012

Changes in the dependence structure

Rainfall deficit index Wheat yields: 10 study farms 1961-1982 - blue line 1983-2003 - red dashed line

200

Na REALES BEITHER

Bokusheva, 2011

Changes in the dependence structure

- Effect of climate change
- Long-term effect of a technology
- Decreasing resilience of eco-systems