The database includes some of the most common pest threats faced by UK farmers including wireworm, cabbage stem flea beetle and pollen beetle, as well as other globally important species.
It is hoped that the new database will help speed up the development of novel pest control approaches that can overcome resistance and create more nature friendly solutions to crop protection.
The four-year Pest Genome Initiative (PGI), a consortium of Rothamsted Research and the agriscience companies Syngenta and Bayer, firstly sequenced the genomes, and then assembled them into their constituent chromosomes before adding information about what individual genes code for.
The team say their efforts will help in the development of crop protection products that are more species-specific and overcome the problem of resistance. They will also help develop non-chemical pest control methods, such as manipulating insect behaviour; focusing on the genes that control how insects find mates and host plants and hence shepherd them away from crops.
Rothamsted Reasearch lead, Prof Linda Field, says the future of farming would be ‘smarter’ and involve less pesticide use: dovetailing the electronic surveillance of insect movements and measures that encourage natural pest control, with these newer, more targeted pesticides.
“Currently as much as a fifth of all crops are lost globally to pests, and this is predicted to increase to 25% under climate change. Whilst non-chemical control methods can have some success in reducing crop losses, pesticides remain a necessary weapon in our fight against devastating crop losses and will so for the foreseeable future,” she says.
Pesticides have long been implicated in wider biodiversity declines, most notably with the impact some neonicotinoids have on bee populations, leading to the subsequent banning of these pesticides in Europe.
By assembling these detailed genome ‘maps’ of annotated sequences, researchers can start to develop the next generation of pesticides – ones that very specifically target the pest whilst leaving other species unharmed, says Prof Field.
The hope is that by having these higher quality genomes available, researchers will be able to better understand how resistance to pesticides evolves – and it will also improve their understanding of insect chemical communication channels, opening up the possibility of non-lethal control methods that ‘hijack’ insect behaviour.
“Understanding the pests’ genes means we can understand the specific proteins they make. By comparing these proteins to the proteins made by non-target species, we can tailor control methods that only work on pests. Examples include those proteins that allow pests to de-toxify pesticides, the basis of much evolved resistance,” she concludes.
Source - https://www.fginsight.com
